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Because learned associations are quickly renewed following extinction, the extinction process must
include processes other than unlearning. However, reinforcement learning models, such as the temporal
difference reinforcement learning (TDRL) model, treat extinction as an unlearning of associated value
and are thus unable to capture renewal. TDRL models are based on the hypothesis that dopamine carries
a reward prediction error signal; these models predict reward by driving that reward error to zero. The
authors construct a TDRL model that can accommodate extinction and renewal through two simple
processes: (a) a TDRL process that learns the value of situation–action pairs and (b) a situation
recognition process that categorizes the observed cues into situations. This model has implications for
dysfunctional states, including relapse after addiction and problem gambling.
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Temporal difference reinforcement learning (TDRL) algorithms
have gained popularity in behavioral neuroscience to explain con-
ditioning tasks. These models learn to select actions and to make
decisions. Generally, these models do this by predicting the ex-
pected value (expected future reward) of taking an action from a
given recognized situation (termed a state of the world). If the
agent (the animal or simulation) knows the value of the conse-
quences of its actions, it can take an action to maximize that value.
Estimated value is updated through a value-prediction error term,
�, defined as the difference between expected and observed
changes in value (Sutton & Barto, 1998). Positive � indicates that
the value observed is better than expected, and the estimated value
of the sequence of actions and observations leading up to the event
should be increased. Negative � indicates that the value observed
is worse than expected, and the estimated value of the sequence of
actions and observations should be decreased (see Figure 1). The
strongest support for TDRL models lies in the similarity of the
dopamine signal to the value-prediction error term � (Barto, 1995;

Bayer & Glimcher, 2005; Montague, Dayan, Person, & Sejnowski,
1995; Montague, Dayan, & Sejnowski, 1996; Schultz, 2002;
Waelti, Dickinson, & Schultz, 2001). TDRL models have recently
found additional support from functional magnetic resonance im-
aging (fMRI) experiments that have examined changes in value
under careful economic controls (McClure, Berns, & Montague,
2003; O’Doherty, 2004; Paulus, Feinstein, Tapert, & Liu, 2004;
Tanaka et al., 2004).

Because associations are so easily reinstated after extinction
(Bouton, 2004; Pavlov, 1927; Rescorla, 2004), extinction cannot
entail unlearning of the original association (Bouton, 2004; Pav-
lov, 1927). However, standard associative models do not differen-
tiate learning from unlearning (e.g., Rescorla & Wagner, 1972).
TDRL models are generalizations of associative models (Sutton &
Barto, 1981) and also do not differentiate learning from unlearning
(Kakade & Dayan, 2002; Suri, 2002): A missing reward produces
� � 0, which produces a decrease in value (expectation of reward),
which produces a decrease in action selection. Although these
models do successfully capture the slow decrease of responding
that characterizes the extinction process (Kakade & Dayan, 2002;
Rescorla & Wagner, 1972; Suri, 2002), they are unable to capture
the quick “relearning” that is renewal.

The direct increase and decrease of estimated value as a function
of the observed value-prediction error term � will converge under
appropriate learning conditions on an accurate estimate of the true
value (Sutton & Barto, 1998), given the assumption of a com-
pletely described, stationary, stable world. However, that assump-
tion clearly does not hold for real animals interacting with the real
world. The real world is not completely described—which vari-
ables are available, which are important, which are unimportant,
and which are hidden must be derived by the agent. In an extinc-
tion experiment, there is an explicit hidden variable unbeknownst
to the animal (i.e., the experimenter has changed the reward
contingency). It is our contention that the existence of hidden
variables is ubiquitous in an animal’s interaction with the real
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world and that animals have evolved mechanisms to handle this
nonstationarity by categorization processes that enable the identi-
fication of (and reaction to) changes in reward contingency with-
out unlearning.

TDRL models rely on the notion of state (Daw, Courville, &
Touretzky, 2006; Sutton & Barto, 1998). In behavioral terms, a
state is the recognition that the agent’s current situation shares
properties with previous (similar) situations. State is thus a cate-
gorization of the agent’s current situation as a member of a class
of similar situations. In practice, a state is a representative collec-
tion of salient observations that might include notable events,
environmental configurations, actions, et cetera. States can include
both spatial and temporal extents. Each unique state is associated
with a value representing the time-discounted future reward that a
behaving animal would expect when starting from that state. Any
implementation of TDRL in the animal brain would have to
include a representation of the state itself, a representation of the
time the animal had been in the state, and an expected value of the
state (Daw et al., 2006). From this information, the animal could
predict the expected reward and make appropriate actions accord-
ingly.

Theory: Implications of Two Processes

TDRL thus depends on two processes: an evaluation function
that determines the value of taking an action given that the agent
is in a certain situation (or state) and a situation recognition
process that categorizes the observable cues into “situations” from
which to reason.

A typical conditioning experiment consists of two phases:
the acquisition phase and the extinction phase. The acquisi-

tion phase entails the development of an association and
is learned through the increase in the value estimate associ-
ated with observation of the conditioned stimulus. We propose
that the extinction phase entails the development of a new
(parallel) state space that can then contain a different value
estimate.

Thus, we hypothesized that tonically low � produces a “split-
ting” of the representation of the state, such that new states are
created that can be differentiated from the original state (s).
Because these new states are different from s, actions taken can
have different consequences associated with the new states
compared with those of state s. Similarly, the same actions
taken from s and the new states can have different estimated
values.

Because the splitting of the state space is dependent on low �, it
only occurs as a consequence of a lack of expected reward. Thus,
if we compare two experiments in which an animal is faced with
two contexts, one in which reward is provided in both contexts and
another in which reward is provided in only the first context, the
model splits only the state in the situation in which reward is not
provided in the second context. As shown in Figure 4, this pro-
duces context-dependent extinction and renewal in the second
simulation.

Any mechanism that produces development of a new state in
response to repeatedly low � would produce the appropriate ex-
tinction with renewal. We have built a model based on increased
attention to cues in response to low � for simulation purposes, but
it is important to note that any model that produces state changes
in response to the undelivered, expected reward would produce
similar results.

Figure 1. Reinforcement learning. In temporal difference reinforcement learning (TDRL), an agent receives
sensory cues, including specialized sensory cues (identified as rewards), processes those cues, and acts upon
them. From the cues, the agent must represent a (possibly distributed) state hypothesis. Value hypotheses and
action selections can be made from those state hypotheses. The difference between expected and observed values
is calculated as the value-prediction error � term, which is fed back to inform the state, value, and action
processing. VTA � ventral tegmental area; SNc � substantia nigra, pars compacta. A color version of this figure
is available on the Web at http://dx.doi.org/10.1037/[articleDOI].supp
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Model

All simulations were performed with the same agent model.1

Manipulations were made to the cues provided (particularly the
contextual cues) and to the probability of reward receipt. Each
situation was identified by a set of cues (a context cue [A or B],
binary state-identification cues [e.g., 0, 1, 0], a magnitude-of-
reward-delivered cue, and a time-since-last-reward cue). The time-
since-last-reward cue was reset to zero on entry into a new envi-
ronment or condition. All cues were treated identically by the
agent. A small amount of noise (1%) was added to each cue on
each time step.

The agent itself consisted of two components: a state-
classification component (implemented as a radial-basis competi-
tive learning model with expansion; Bishop, 1995; Duda et al.,
2001; Grossberg, 1976; Hertz, Krogh, & Palmer, 1991) and a
temporal difference learning component (implemented as a
Q-learning model by using Q[s, a]; Sutton & Barto, 1998; Szepes-
vári & Littman, 1999).

The state-classification model used for the agent was based on
standard competitive learning algorithms (Grossberg, 1976; Hertz
et al., 1991) that were based on radial-basis functions (Bishop,
1995; Hertz et al., 1991) with classifier expansion (Duda et al.,
2001; Hertz et al., 1991). At each time step, the actual situation in
the world provided the agent with a multidimensional cue,

c(t) � (context, sW, R, time since last reward) � �, (1)

where sW was the binary state-identification cue (e.g., light on,
sound off, house light on), R was the magnitude of reward deliv-
ered in that time step, and � was the zero-mean Gaussian noise
with standard deviation, �CN. Also, � was a vector of dimension
nc � length (sW) � 3. For numerical stability, context and state
identifying binary cues were either 0 or 100; time since last reward
was an integer identifying the number of time steps since the agent
last received reward. The activation h(sA) of each potential agent
state sA was calculated through the following three steps:

Zc�t	) � �wA�c�t	 � 
i		 (2)

D2�c�t		 � Z�c�t		��i
�1Z�c�t		 (3)

P�c�t	�si	 
1

�2�nc��i�
exp� �

1

2
D2�c�t		� . (4)

Z(c(t)) measures the difference between the current set of cues c(t)
and the mean for the prototype for state i, 
i. This distance was
weighted by the cue weight wA. (In this formulation, c(t), 
i, and
wA are all tuples of size nc; see Equation 1.) D2(c(t)) transformed
this by the covariance matrix for state i, �i. This measure is the
Mahalanobis distance, after the dimensions have been stretched or
compressed through the weighting function wk. P(c(t)|si) trans-
forms D2(c(t)) into a Gaussian distribution; P(c(t)|si) is normalized
so that under normal conditions (when @kwk � 1). P(c(t)|si)
measures the probability that the current set of cues c(t) could have
been drawn from a multivariate normal of nc dimensions centered
at 
i with covariance matrix �i (Duda et al., 2001).

If any state had a stronger activation than threshold (�s), then
the state with maximal activation was identified as the current
agent state. If no state had a stronger activation than threshold (�s),

a new state was created with center 
 � c(t) and spherical
covariance matrix with variance �0 � 25.

Once more than 100 observations were classified as part of a
state, the parameters for each state were updated at each time step.
For each cue, 
i was updated to the mean of all observations
classified as state si, and �i was updated to the covariance matrix
of all observations classified as state si. Thus a state with highly
consistent observations would tighten its variance to match those
observations, whereas a state with very variable observations
would expand its variance to cover a large range of cues. Once
more than 100 observations had been observed in the world, the
attention parameter wk (cue weight for cue k) was also updated on
each time step on the basis of the information that cue provided to
the state space:

wk � 0.5 � 0.5 tanh�IM�Ck ,S	 � 0.5	/�cw) (5)

IM�Ck ,S	 � H�Ck	 � �
i

H�Ck
i 	 (6)

H�Ck	 � �
t

p�ck	log2 p�ck�t		 (7)

H�Ck
i 	 � �

t�si

p�ck	log2 p�ck�t		. (8)

IM(Ck, S) was the mutual information between the cues and the
states, defined as the increase in entropy in the observed cue
distribution. H(Ck) was the total entropy of all observations in the
cue space, and H(Ck

i ) was the entropy over those observations that
were categorized as being in state si.

Thus cues that provided no information to the state space were
ignored. �cw was a parameter that controlled the slope of the
sigmoid. Cue weight wk is a form of attention and was modified by
tonic levels of �. (See Equation 13.)

The TDRL model used for the agent was based on standard
Q-learning value-prediction methods (Sutton & Barto, 1998). For
each state,2 an expected value3 of taking action a was stored,
V(s, a). Newly created states had all expected values set to zero.
Expected value was updated using standard one-step temporal
difference algorithms (Daw et al., 2006; Dayan & Abbott, 2001;
Sutton & Barto, 1998).

On each time step, an action was selected on the basis of a
standard softmax selection process (Sutton & Barto, 1998; Dayan
& Abbott, 2001),

P�select action a�s�t		 � exp��V�s�t	,a		/�
a

exp��V�s�t	,a		,

(9)

1 The simulations reported here were performed using Matlab R2006b
and are publicly available from http://web.ahc.umn.edu/�redish/
TDRLXT-Simulations.zip

2 Remember, states are internal to the agent—they are categorizations of
cues provided by the world. They reflect regularities in the world, but they
do not necessarily have direct correspondence to experimenter-introduced
“world states.”

3 Typical formulations of value as a function of state–action pairs are
termed Q-learning to differentiate them from values based only on states.
We prefer to use the term V(s, a) to reflect that these are “values.”
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where s(t) was the agent’s current state; and � was a parameter that
balanced exploration and exploitation (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006; Doya, 2002). High � drove the agent to
be more likely to select the high-value action, whereas low � made
the agent more likely to select actions more randomly.

On every time step, � was calculated as the difference between
the expected value of the previous state–action pair and the ob-
served value,

��t	 � ��max
a

�V�s�t	,a		 � R�t		 � V�s�t � 1	,a	, (10)

where V(s, a) was the stored value of taking action a from state s,
and � was a discounting parameter set to 0.25.4 In the TDRL
component, � adjusted the value estimate of the agent’s hypothe-
sized state via the standard temporal difference reinforcement
learning rule,

V�s�t � 1	,a	4 V�s�t � 1	,a	 � ���t	, (11)

where � was a learning rate parameter, set to 0.05.
�� was defined as an exponentially decaying running average of

recent � signals that were � 0:

�� �t	 � �0�� �t � 1	 � �1 � , (12)

where � indicates rectification at 0, such that  1 � 0 but �1
� �1. �0 and �1 were parameters controlling the speed at which ��

could change.
We explored allowing �� to control key parameters in the equa-

tions above, including the distribution of attention to cues (Equa-
tion 5), the acceptable width of the radial-basis function �i (Equa-
tion 4), and the exploration/exploitation parameter � (Equation 9).
However, we found that �� controlling the attention to cues (Equa-
tion 5) was the most stable and was sufficient to produce all the
necessary results. This is therefore the version we report here:

effective wk � � � tanh��� /�DB		 � �1 � tanh��� /�DB		wk. (13)

Theoretically, �� could range from 0 to ��, approaching �� as the
agent started missing rewards. As �� 3 ��, tanh(�� /�DB) 3 �1,
the effective wk 3 1. As �� 3 0, tanh(�� /�DB) 3 0, the effective
wk 3 wk, which was normally �1. Thus, when the agent missed
expected rewards, it began to pay closer attention to the cues. This
made the agent more likely to create a new state hypothesis as
described above. �DB was a standard squashing parameter, con-
trolling the slope at which changes in �� affected wk. The param-
eters used in the simulations are summarized in Table 1.

Simulation 1: Acquisition of a Response

The first simulation (acquisition) simply tested the simulation’s
ability to acquire a response. It simulates a simple FR1 experiment.
The world consisted of two situations and 10 actions (see Figure
2). If the agent took Action 1 when the world was in Situation 0
(S0), it received reward (R) with probability (P), and the world
transitioned to Situation 1 (S1). Under any other condition, the
world returned to Situation S0. Actions 2–10 simulate other things
the agent can do in the environment (sleep, run around, groom,
etc.). Simulated agents (N � 50) were run under conditions of
(R � 1, P(R) � 1), indicating a reward of 1 with probability of
delivery of the reward of 1, and (R � 0, P(R) � 0) for 250 time

steps. We measured the number of reward attempts by measuring
the proportion of times in which the agent selected Action 1 from
S0.

Simulation 2: Extinction With Renewal

This simulation tested the basic extinction with renewal result.
In the same world from Simulation 1, each agent experienced 250
time steps in an acquisition condition in Context A (Action 1 in
state S0 led to reward R � 1, P(R) � 1). Then, agents were
potentially moved to an extinction condition. Some agents were
moved to a new context (Context B), and some agents remained
within the same context (Context A). The two contexts were
identical except for the context cue. Some agents received reward
(R � 1, P(R) � 1) in the potential extinction condition, and other
agents did not (P(R) � 0). Agents remained in the potential
extinction condition for 250 time steps. Finally, all agents were
returned to Context A for 250 time steps, in which they all had the
opportunity to respond for reward again (renewal: R � 1,P(R) �
1). Agents (N � 50) were run under each condition (reward in
Context A during potential extinction condition, no reward in
Context A during potential extinction condition, reward in Context
B, no reward in Context B).

Simulation 3: Nonrewarded Cued Renewal

This simulation tested the effect of returning the agent to a
familiar environment without reward. In the same world from
Simulation 1, each agent experienced 250 time steps in an acqui-
sition condition in Context A (Action 1 in state S0 led to reward
R � 1, P(R) � 1). The association was then extinguished for 250
time steps in Context B, just as in Simulation 2. The agents were

4 We used a discount factor of 0.25 because the world model did not
include a long intertrial interval (ITI) separating each trial (see Figure 2).
Adding such an ITI state does not change the results, but it increases the
complexity of the simulations unnecessarily. Discount factors as high as
0.90 provide qualitatively similar results to those presented here.

Table 1
Parameters Used in Simulations

Parameter Variable Value

Learning
� Learning rate 0.05
� Discount factor 0.25/ts

States
�0 Initial covariance of RBF 25
�p Threshold for new state 10�8

�CN Cue noise 1
�CW Cue weight sigmoid factor 3

Value
�0 �� history 0.9999
�1 �� scale factor 1.50
� �� sigmoid factor 1

Actions
� Action sigmoid factor 5

Note. RBF � radical basis function.
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then returned to Context A, but no reward was provided. Agents
(N � 50) were run, and the proportion of times in which the agent
selected Action 1 in S0 was measured.

Simulation 4: The Partial Reinforcement Extinction Effect
(PREE)

This simulation tested the effect of partial reinforcement on
extinction. In the same world as in Simulation 1, agents experi-
enced 750 time steps in an acquisition paradigm, followed by 250
time steps in an extinction paradigm. Four partial reinforcement
paradigms were tested (P(R) � (1.0, 0.75,0.50,0.25)). The reward
received on each successful attempt (taking Action 1 in S0) was
titrated so that the total average reward expected from full re-
sponding was held constant. Thus, the agents experiencing P(R) �
1.00 received one unit of reward each time the world delivered
reward, whereas agents experiencing P(R) � 0.25 received four
units of reward each time the world delivered reward. Extinction
occurred in the same context with the same cues as acquisition.
Agents (N � 50) were run under each condition. Proportion of
extinction was measured as the mean number of attempts per unit
of time in the first 100 steps of the extinction condition divided by
the mean number of attempts per unit of time in the last 50 steps
of the training condition.

Simulation 5: PREE With Intervening Continuous
Reinforcement

This simulation replicated the results of Jenkins (1962) and
Theios (1962), in which a continuous reinforcement condition was
interposed between the partial reinforcement condition and the
extinction condition. Agents experienced 750 time steps in a
partially reinforced acquisition paradigm (identical to that in Sim-
ulation 4), followed by 150 time steps in a full reinforcement
paradigm, R � 1, P(R) � 1, followed by 250 time steps in an
extinction paradigm (as in Simulation 4). Extinction was measured
(as in Simulation 4) as the ratio of attempts after extinction to the
number of attempts at the end of the partial training condition (i.e.,
the continuous reinforcement condition was not included in the
measurement).

Simulation 6: Problem Gambling

In order to examine the impact of state categorization on prob-
lem gambling, agents were allowed to experience the basic single-

choice world (Figure 2). Agents were first allowed 250 steps in the
world with R � 0.6, P(R) � 0.1. In order to simulate the cost of
playing, taking Action 1 under any condition entailed a cost,
assessed as a negative reward (cost � �0.50). This meant that if
the agent regularly took Action 1 in S0, it would lose an average
of 0.44 per try. Agents were then put into a world with a R �
payout, P(R) � 0.50 for 100 time steps, where payout was 5, 10,
25, or 100, depending on the trial (different payouts were tried for
different agents, but each agent experienced only a single payout
size. This was done to simplify simulations and does not change
the results). Afterward, agents were then allowed 250 steps under
the original conditions (i.e., R � 0.6, P(R) � 0.10). Because the
number of wins changed randomly between agents, we used re-
gression statistics to examine the effects of number of wins, the
total payout, and the variance of winning on the agents’ likelihood
to continue playing. Agents (N � 50) were run under each con-
dition.

Results

Acquisition

When faced with no reward, agents selected all actions ran-
domly. Individual differences between agent responses arose from
noise in the cues provided and in the action-selection process (see
the Method section). Because there were 10 actions available,
random chance produced a 10% chance of selecting Action 1 in
S0. In contrast, when receiving reward on each attempt, the agents
learned to increase the probability of attempting reward (see Fig-
ure 3). Because the � parameter continued to drive some explo-
ration as well as some exploitation, maximal responding ap-
proached but did not reach 100%. The slope of the increase
depended directly on the learning rate � and less directly on other
parameters. The maximum response depended primarily on the
exploration–exploitation parameter �. Agents tended to categorize
the two situations (S0, S1; see Figure 2) into two internal states.
However, some agents used three or four states to represent the
environment. In these cases, agents split the categorization of
either S0 or S1 into multiple states.

Extinction With Renewal

Once the agent has learned to select the appropriate action in the
appropriate situation, it does not need to relearn this association if

Figure 2. The world used for the simulations.

Figure 3. The agent learns to make responses that lead to rewards. Black
line: response leads to reward; gray line: response does not lead to reward.
A color version of this figure is available on the Web at http://dx.doi.org/
10.1037/[articleDOI].supp
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it is placed in a new context. Figure 4 shows the responses made
by agents when faced with either reward or no reward in the new
context. Agents that continued to get reward in the new context
continued to respond at high rates, whereas agents that did not
receive reward in the new context dropped their response rates
back to random (10%). However, both groups responded at high
rates when returned to the original context. Note the very fast
reacquisition of the response in the renewal condition for the
extinction groups.

This fast reacquisition occurred because the extinction group did
not forget the association learned in the acquisition condition.
Instead, they created new internal representations of the situation
(i.e., they “split” their states). This allowed the extinction group to
revert back to the original state representation when returned to the
original context (renewal). This state-splitting process can be seen
in Figure 4 (right panels): Agents that continued to receive reward
used fewer states to represent the two situations (S0, S1) than did
agents that received extinction training.

The slope of the rate of extinction depended on the extent of the
difference between the two acquisition and extinction contexts. For
example, in the top panels of Figure 4, the context was not changed
between conditions. However, in the lower panels, the two con-
texts were quite different, and extinction happened quickly. In
either case, as long as the situation identifying cues did not change

between the two contexts, there was no acquisition slope for agents
that continued to receive reward. And in all cases, renewal of
responding happened very quickly (compare renewal conditions
with acquisition conditions in Figure 4).

Cued Renewal

When an agent is trained in one context, extinguished in an-
other, and then returned to the first context, spontaneous renewal
of responding is often seen (Bouton, 2002, 2004; Bouton, West-
brook, Corcoran, & Maren, 2006). This can also be seen in cued
associations; animals are likely to “spontaneously recover” re-
sponding to a cue they have not been exposed to for a long time
(Pavlov, 1927; Rescorla, 2004; Robbins, 1990). This cued renewal
of responding is thought to underlie cued relapse to addiction
(Childress, Ehrman, Rohsenow, Robbins, & O’ Brien, 1992; Chil-
dress et al., 1993; Childress, McLellan, Ehrman, & O’Brien, 1988;
O’Brien, Childress, McLellan, & Ehrman, 1992). In our model,
extinction primarily proceeds by re-representation of a situation as
a new state. Thus, extinction does not remove the association
previously stored. Presenting a cue that suggests to the agent that
it is in the original situation (rather than in the new situation) will
renew responding, even if no reward is presented. In Figure 5, the
agents renewed responding when returned to Context A. Because

Figure 4. Extinction with renewal. (Left panels) Acquisition: The agent learns to make responses that lead to
rewards (i.e., taking Action 1 in Situation 0 [S0]). Extinction: Some agents no longer receive reward for
responding (gray line), whereas other agents continue to receive reward for responding (black line). Renewal:
Agents were all then returned to getting reward for taking Action 1 in S0. (Right panels): Number of states used.
In the top panels, the agent remained in the same context (A) through all three conditions. In the lower panels,
the agent was moved from Context A to Context B between conditions. A color version of this figure is available
on the Web at http://dx.doi.org/10.1037/[articleDOI].supp
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no reward was given in the renewal condition, extinction then
proceeded normally in Context A.

PREE

When an agent is trained with partial reinforcement, the agent is
slower to extinguish its response (Capaldi, 1957; Domjan, 1998).
Our simulations also show this effect (see Figure 6). In our model,
slowed extinction after partial reinforcement arises because the
agent has learned that nonrewarded conditions can occur during
partial reinforcement. Thus, when the agent does not receive
reward during the extinction condition, it takes longer to determine
that the extinction condition is different and will require a different
situation representation (a “splitting” of the state). This is very
compatible with Capaldi and colleagues’ suggestion that extinction
arises from a discrimination between acquisition and extinction
conditions (Capaldi, 1957, 1958; Capaldi & Birmingham, 1998;
Capaldi & Lynch, 1968).

The Role of Discrimination in PREE

Early theories explained the PREE as a consequence of the
ability of the animal to discriminate between the acquisition and
extinction conditions (Domjan, 1998). These theories were tested
by interposing a continuous reinforcement condition (in which the
animal was always rewarded for responding) in between the par-
tially reinforced acquisition condition and the extinction condition.
Under the simplest discrimination hypothesis, this interposed con-
tinuous reinforcement should always enable the discrimination of
the extinction condition and should remove the PREE (Domjan,
1998). However, interposing fully reinforced conditions did not
remove the PREE (Jenkins, 1962; Theios, 1962).

In our model, the PREE does arise from a stronger ability to
discriminate between fully reinforced and extinction conditions
than between partially reinforced and extinction conditions. In our
simulations, interposing an intervening fully reinforced condition
does not remove the PREE. (See Figure 7.) As above, this is
because the partially reinforcing condition includes unrewarded
responses. The interposing fully reinforcing condition does not
remove the memory of the partially reinforced condition, which

allows the animal to discriminate between the current observations
(in the extinction condition) from previous experience (i.e., the
acquisition condition). Thus the agent continues to show a PREE.

Discussion

The theory put forward in this article explains acquisition and
extinction as two interacting learning processes: a storage of new
associations, driven by positive � signals (signaling reward, posi-
tive value larger than expected, leading to acquisition) and a
splitting of the state space, driven by low tonic �� signals (signaling
disappointment, a lack of delivered expected positive value, lead-
ing to extinction). This theory suggests that the decision as to
whether to act after extinction is not a decision-process question—
Should I act or not?—but rather a cognitive question—Which
situation am I in?

This new theory captures the time course of acquisition via
standard TDRL associative learning processes. The time course of
extinction, however, arises from probabilities of recall. Whether
the representation is always either in a specific state and the slow
decay time course of extinction occurs via averaging over trials (as
suggested, e.g., by Gallistel, Fairhurst, & Balsam, 2004) or
whether the believed state of the world is somehow mixed pro-
portionally between states producing probabilistic action selection
(as suggested, e.g., by Daw et al., 2006) is still an open question.
In any case, in our model, renewal occurs via a sudden return of
the representation of the world to the original state (s) from which
the agent expected to receive reward. The time course of renewal
would then depend on the probability of entering the state in which
the agent expects reward over other potential states.

Relation to Other Models of Extinction and Renewal

Current theories of extinction in both psychology and neuro-
science (Bouton, 2002, 2004; Bouton et al., 2006; Delameter,
2004; Milad & Quirk, 2002; Myers & Davis, 2002; Quirk et al.,
2006; Rescorla, 2004) are based on the addition of new variables,
often identified as contextual (Bouton, 2002, 2004; Bouton et al.,
2006) or inhibitory (Delameter, 2004; Pavlov, 1927). In any
content-addressable memory, the cues provide inputs from which

Figure 5. Cued renewal of responding. Acquisition: The agent learns to make responses that lead to rewards
(i.e., taking Action 1 in Situation 0[S0]). Extinction: Agents are placed in a new context and no longer receive
reward for responding (gray line). Renewal: Agents were all then returned to the original context (A). Because
in the renewal condition agents were not rewarded for actions taken in Context A, they reextinguished their
responding. Because the renewal condition occurred in the same context under conditions more similar to the
acquisition context than to the extinction context, extinction was slower during renewal than during the original
extinction. A color version of this figure is available on the Web at http://dx.doi.org/10.1037/[articleDOI].supp
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a unique state can be recalled. Our theory suggests that the “in-
hibitory cues” are simply the new cues that serve to disambiguate
the original state s from other states. This may explain why
“inhibitory cues” are always modulatory and are often contextual
(Bouton, 2004; Delameter, 2004)—they do not serve to instantiate
a new state, but rather to differentiate the new state from the old
state. Acquisition in these theories, however, is based on simple
conditioned stimulus–unconditioned stimulus associations and do
not have the explanatory power that the temporal difference model
does.

Computational models in which acquisition is based on tempo-
ral difference learning rules handle extinction by unlearning (Kak-
ade & Dayan, 2002; O’Reilly & Munakata, 2000; Pan, Schmidt,
Wickens, & Hyland, 2005). Although all three of these models
capture both acquisition and extinction, only the O’Reilly and

Munakata (2000) model captures a renewal that is faster than
acquisition. It does so by using a � rule with threshold units. The
prediction unit decreases its activity in response to missing re-
wards only until it drops below activation. Because the input
weight matrix remains just below threshold, a single reward can
retrigger responding (bringing it back above threshold). However,
because the prediction unit waiting below threshold needs a pos-
itive � signal to drive it back above threshold, the O’Reilly and
Munakata model will not show a response to nonrewarded asso-
ciated cues and cannot explain contextual or spontaneous recovery
of responding (Bouton, 2002, 2004; Rescorla, 2004; Robbins,
1990). Because extinction occurs by unlearning of the input
weights to the prediction unit, extinction speed in the O’Reilly and
Munakata model is inversely proportional to the partial reinforce-
ment rate. Contrary to the animal behavior literature (Capaldi,

Figure 6. The partial reinforcement extinction effect. P � probability; R � reward. Error bars show standard
error of the mean measured over simulations (n � 50). A color version of this figure is available on the Web
at http://dx.doi.org/10.1037/[articleDOI].supp
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1957; Domjan, 1998), in the O’Reilly and Munakata model, agents
that receive a reinforcement at a low probability rate extinguish as
fast or faster (but definitely not slower) than do animals that
receive a reinforcement at high probability. This means that the
O’Reilly and Munakata model cannot explain the PREE (Domjan,
1998; Pearce & Bouton, 2001). In particular, the O’Reilly and
Munakata model has no long-term memory of past reinforcement
schedules and so cannot carry effects across intervening reinforce-
ment schedules (Jenkins, 1962; Theios, 1962). In contrast, our
model proposes that extinction follows as a consequence of
changes in the state-space representation, which provides expla-
nations for nonrewarded cued renewal (Simulation 3), for the
PREE (Simulation 4), and for the continued effect of partial

reinforcement across intervening reinforcement schedules (Simu-
lation 5).

Our state-space expansion hypothesis reconciles current psycho-
logical theories of extinction with current TDRL learning theories.
Our model can be seen as a mathematical instantiation of those
current psychological theories, particularly those of Capaldi (1957,
1958), who suggested that the key to extinction is the ability to
discriminate between the acquisition and extinction situations. It is
important to note that we have been able to model experiments that
have shown that the partial reinforcement effect is not removed by
an intervening continuous reinforcement schedule (Domjan, 1998;
Jenkins, 1962; Theios, 1962). In our model, the agent’s prior
experience with partial reinforcement can be recalled during the

Figure 7. The partial reinforcement extinction effect continues to occur even with an intervening fully
reinforced condition (CRF). P � probability; R � reward. Errors bars show standard error of the mean measured
over simulations (n � 50). A color version of this figure is available on the Web at http://dx.doi.org/10.1037/
[articleDOI].supp
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extinction training, which reduces the discriminability of the ex-
tinction training and slows down extinction (see Figure 7). These
ideas are also consistent with those of Bouton (2002, 2004), who
suggested that extinction arises from secondary cues that gate new
associations. Cues that discriminate between the two situations are
those that differentiate the original state s from other states. These
cues effectively gate the associations.

This theory provides immediate explanations for the context
sensitivity (Bouton, 2004) and cue dependence (Bouton, 2004;
Pavlov, 1927) of extinction, both of which provide cues to disam-
biguate state. Reinstatement by provision of unsignaled rewards
(Pavlov, 1927; Rescorla, 2004; Robbins, 1990) can also be envi-
sioned as a cued recall of the original state over other states. The
presence of recent/available rewards is one of the most salient
differences between states (Capaldi, 1957, 1958; Capaldi & Bir-
mingham, 1998; Capaldi & Lynch, 1968).

What Defines a State?

Taking the correct action in a situation requires solving a clas-
sification problem—the agent must identify the set of previous
situations that are similar enough to the current situation in order
to make predictions about value and consequences of its actions.
Once the agent has made this classification, it can make decisions
about actions. Without this classification, agents will show random
responses.

This classification is fundamentally a memory process and
requires a model of memory encoding and retrieval. The agent has
to both identify the important cues and use them to retrieve the
appropriate situation categorization. Cues, particularly in the real
world, are ubiquitous. Some of these cues are reliable and can
provide consistent definitions of situations. Other cues are unim-
portant, unreliable, or inconsistent. The mechanisms that control
reliability are complex and beyond the scope of this article.
Clearly, an agent needs to differentiate reliable from unreliable
cues. However, whether a cue becomes fundamental to the defi-
nition of a situation is likely to depend on factors beyond mere
reliability, such as novelty, salience, and other factors (Collett,
1987; Gallistel, 1990; Knierim et al., 1995; Pearce & Bouton,
2001). Cues can also modulate the interpretation of other cues
(Domjan, 1998). The extent to which cues serve as separate
elements or as configurations is still vigorously debated (Delame-
ter, 2004; Domjan, 1998; Pearce, 1994; Pearce & Bouton, 2001;
Rescorla, 2003).

How agents use cues to recognize internal states or “situations”
is a very large open question, and is beyond the scope of this
article. Fundamentally, however, the final action must be unitary—
either an agent takes an action or it does not. That final action
reflects a categorization. Whether that unitary action also reflects
a unitary state is an open question (Daw, 2003; Daw et al., in press,
2006; Doya et al., 2002). The results in this article follow from the
hypothesis that this situation classification problem is fundamen-
tally a memory process and that it requires a balance between
encoding and retrieval.

Context

In our model, the state categorization is based on both the
quickly changing cues (e.g., sW) as well as slowly changing

contextual cues. Because our model uses the mutual information
between the cues and the states to determine the attention to the
cue (cue weight, wk; Equation 5), cues that do not change are
ignored. Thus, context is ignored in Simulation 1 because it does
not change at all. Even when context does change in Simulation 2,
attention to it is paid only when states start to split. The definition
of context is highly complex and depends on issues of spatial and
temporal continuity and scale (Cassaday & Rawlins, 1997; Fuhs,
VanRhoads, Casale, McNaughton, & Touretzky, 2005; Hirsh,
1974; Hirsh, Leber, & Gillman, 1978; Nadel, 1994, 1995; Nadel &
Willner, 1980; Nadel et al., 1985; O’Keefe & Nadel, 1978; see
Redish, 1999, for a review), but this model provides one potential
explanation for the difference between contextual and standard
conditioning stimuli—contextual cues change slowly and provide
little information to the immediate decision making that must
occur within the context. Similarly, this provides an explanation
for the role of contextual cues in conditioning (Bouton, 2002,
2004)—contextual cues only come into play when agents need to
differentiate actions in response to similar stimuli occurring in
different contexts.

When Are Representations Split? When Are Values
Unlearned?

In the model proposed in this article, � � 0 can produce two
effects: It can drive the TDRL component to reduce a learned
(associated) value back toward 0 (i.e., unlearning), or it can drive
the state-classification component to reinterpret the set of cues as
a new state (i.e., state splitting). Both of these processes are
available to our model. These two processes, however, can be
dissociated by their different effects on renewal. If a value is
unlearned, then renewal is the same as relearning and will occur
with the same time course as the original learning. In contrast, if
the state classification of the cue set has changed, then the original
state is still available; a process that drives the agent to use the
original state classification will produce essentially instant re-
newal. In the simulations presented above, which process will
occur is entirely dependent on the state-classification process. If
the classification of the cue set changes, the original value is left
intact. If the classification of the cue set does not change (i.e., the
agent continues to use the original state), then the original value
will be unlearned. In our simulations, the state-classification pro-
cess appears faster than the unlearning process, therefore the
simulated agents tend to extinguish by state reclassification rather
than by unlearning.

That being said, it is likely that under some conditions, agents
may prefer not to reclassify situations and will show unlearning
rather than state splitting. In a recent article, Myers, Ressler, and
Davis (2006) tested the contextual reinstatement of fear in rats that
experienced extinction trials 10 min, 1 hr, 24 hr, or 72 hr after
acquisition.5 They found that animals in the 10-min and 1-hr
groups did not show subsequent renewal (suggesting the animals
had in fact forgotten the association), whereas the animals who had
24 hr or 72 hr between acquisition and extinction showed strong
subsequent contextual renewal as well as a higher probability of

5 Although this experiment addresses extinction of aversive associations,
similar processes drive extinction of aversive associations.
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spontaneous renewal (suggesting the animals had not forgotten the
original association).

Do all memories require 24 hr to solidify such that when the
animals are reexposed to the same situation, extinction proceeds by
state reclassification rather than by unlearning? We find this highly
unlikely. Certain extremely salient events can produce unforgetta-
ble associations, even though they occur only once. For example,
people who have received shocks from implanted cardiodefibrila-
tors often make surprising associations that can produce severe
fear and anxiety (Bourke, Turkington, Thomas, McComb, &
Tynan, 1997; Godemann et al., 2001; Hamner, Hunt, Gee, Garrell,
& Monroe, 1999). In our current model, we have not included an
explicit solidification parameter; all agents and all simulations
used the same classification mechanism. State reclassification de-
pended on �� and tended to occur before unlearning could take
place. Thus our simulated agents reclassified situations rather than
unlearned associations. It is possible that this time course differ-
ence seen by Myers et al. (2006) reflects consolidation (Gais &
Born, 2006; Smith, 1995; Teng & Squire, 1999), long-term poten-
tiation (LTP) processes (Huang & Kandel, 1995; Lynch, 1998;
Lynch, Rex, & Gall, in press; Sajikumar & Frey, 2004), or some
other process providing stabilization of representation in the state-
classification system. Extensive theories have suggested that
changes in memory storage can occur over very long time scales
(Cohen & Eichenbaum, 1993; Nadel & Moscovitch, 1997; Squire,
1987), but this literature is beyond the scope of this article.
Memory stability would likely be related to the strength of the
association, as evidenced by Wang, Marin, and Nader (2005). We
suggest that the balance between extinction by reclassification and
extinction by unlearning depends on the specific parameters of the
association, including the time elapsed since the association was
made; the salience, surprise, and magnitude of the events; as well
as the internal parameters such as attention, stress, and sleep-
consolidation processes. In any case, our theory implies that the
key to differentiating between state-reconsolidation and unlearning
processes is exactly the classic question: Can the association be
renewed?

This viewpoint on extinction also provides an entry into the
reconsolidation phenomenon: Both extinction and reconsolidation
require memory retrieval (Ouyang & Thomas, 2005), and both
require protein synthesis (Berman & Dudai, 2001; Eisenberg,
Kobilo, Berman, & Dudai, 2003; Nader, Schafe, & LeDoux, 2000;
Suzuki et al., 2004; Vianna, Szapiro, McGaugh, Medina, & Izqui-
erdo, 2001). Recently acquired memories are susceptible to ma-
nipulations during retrieval (Berman & Dudai, 2001; Myers et al.,
2006; Nader et al., 2000; Suzuki et al., 2004); however, for
well-established memories, it is the extinction process that is
susceptible to manipulations (Eisenberg et al., 2003). We suggest
that these effects may arise from the difference between poorly
established and well-established memories. Poorly established
memories are susceptible to unlearning (thus an unreinforced
recall combined with protein synthesis inhibitors reduces the
stored association). However, extinguishing behaviors arising
from well-established memories requires the storage of a new
state. Thus, extinction of strongly stored memories requires new
learning, and the extinction rather than the original memory is
susceptible to protein synthesis inhibitors.

What Is the Effect of Extinction on Other Available
Actions?

The model as presented here first categorizes the available cues
into a state or situation and then decides upon the most appropriate
action given that categorization. This means that in our model,
extinguishing one action in response to a stimulus will have the
effect of extinguishing all actions in response to the same stimulus.
To our knowledge, the effect of extinction of one action in re-
sponse to a cue on the taking of other actions in response to the
same cue is still an open question. It is important to note that the
agent’s state is a categorization derived from the immediately
available cues. Thus the agent’s state categorization includes both
the immediate conditioning stimuli (tone, light, etc.) as well as the
contextual cues (environment, slowly changing cues, etc.). Just
because the model splits the state derived from one stimulus in a
context (e.g., tone), this does not mean that it must split the state
derived from another stimulus in the same context (e.g., light).

An additional possibility is that states are never represented
separately from actions: That is, representations of states are really
state–action pairs. Recent evidence from midbrain dopamine re-
cordings in monkeys suggests that phasic dopamine signals encode
not just state–action pairs, but actually, the entire state–action–
reward–state–action set (Morris et al., 2006; Niv et al., 2006a). If
all situations are encoded as state–action pairs, then state splitting
due to disappointment would (by definition) only apply to the
action with disappointing consequences. States in our model as
implemented are based entirely on the available cue set and do not
include actions in the state definition, but our theory is agnostic as
to whether states are based solely on cues or whether they include
an expected (or recent) action component.

Anatomical Instantiations

The TDRL component. Most models of TDRL’s anatomical
instantiation are based on models of the basal ganglia in general
and of the striatum in particular (Barto, 1995; Daw et al., 2006;
Doya, 2000a, 2000c; Foster, Morris, & Dayan, 2000; Gurney,
Prescott, & Redgrave, 2001a, 2001b; Houk, Davis, & Beiser,
1995; Johnson & Redish, 2005; Montague et al., 1996; Redgrave,
Prescott, & Gurney, 1999; Samejima, Ueda, Doya, & Kimura,
2005; Suri & Schultz, 1999). Striatal neurons have been found to
represent key parameters of the temporal difference reinforcement
learning algorithm (e.g., situation–action associations; T. D. Bar-
nes et al., 2005; Carelli & West, 1991; Daw, 2003; Gardiner &
Kitai, 1992; Hikosaka et al., 1999; Hikosaka, Nakamura, & Na-
kahara, 2006; Jog, Kubota, Connolly, Hillegaart, & Graybiel,
1999; Kermadi & Joseph, 1995; Kermadi, Jurquet, Arzi, & Joseph,
1993; Matsumoto, Hanakawa, Maki, Graybiel, & Kimura, 1999;
Miyachi, Hikosaka, Miyashita, Kárádi, & Rand, 1997; Schmitzer-
Torbert & Redish, 2004; Tremblay, Hollerman, & Schultz, 1998),
reward delivery (Daw, 2003; Schmitzer-Torbert & Redish, 2004;
White & Hiroi, 1998), and value signals (Daw, 2003; Kawagoe,
Takikawa, & Hidosaka, 2004; Nakahara, Itoh, Kawagoe,
Takikawa, & Hikosaka, 2004). The fMRI data from humans play-
ing sequential games show similar correlates to value, �, and other
parameters of these models in striatum (McClure et al., 2003;
McClure, Laibson, Loewenstein, & Cohen, 2004; O’Doherty et al.,
2004; O’Doherty, 2004; O’Doherty, Buchanan, Seymour, &
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Dolan, 2006; Seymour et al., 2004; Tanaka et al., 2004). These
data suggest that the TDRL component likely resides primarily
within the basal ganglia.

The � signal. Extensive research has implicated a role for
dopamine in reward learning (Schultz, 2002; Wise, 2004). In
particular that phasic bursts of dopamine signal differences be-
tween expected and observed changes in value (Bayer & Glimcher,
2005; Ljungberg et al., 1992; Schultz, 2002; Waelti et al., 2001).
Unexpected rewards or reward-predicting stimuli produce phasic
bursts of activity in dopaminergic neurons, whereas undelivered
rewards or stimuli that predict that an expected reward will not be
delivered produce pauses in the baseline firing of dopaminergic
neurons (Bayer & Glimcher, 2005; Ljungberg et al., 1992; Schultz,
2002; Waelti et al., 2001). For both positive (value higher than
expected, indicated by increases in dopamine-cell firing rate) and
negative (value lower than expected, indicated by length of pause
in firing) value-prediction errors, Bayer and Glimcher (2005)
found that the dopamine signal was related to the magnitude of the
error. Fast-scan voltammetry has confirmed that these changes are
reflected (although transformed; Montague et al., 2004; Ungless,
2004) in extracellular dopamine levels (Stuber, Wightman, &
Carelli, 2005). These data suggest that phasic bursts of dopamine
are likely to carry the � signal (Barto, 1995; Daw et al., 2006;
Montague et al., 1995, 1996).

The situation-categorization component. Correct action within
a situation requires the recognition that the situation is similar to
previous situations (Daw et al., 2006; Sutton & Barto, 1998). This
is, fundamentally, a memory-retrieval and categorization problem.
Extensive work in categorization problems have implicated the
cerebral cortex in such processes (e.g., Fuster, 1997; Kéri, 2003;
Kohonen, 1980; Logothetis & Sheinberg, 1996).

Our theory suggests that extinction arises from changes in this
categorization function. Although changes in sensory cortical rep-
resentations have been seen with learning (Myers & Davis, 2002;
Weinberger, 1998) and with changes in dopamine levels (Bao,
Chan, & Merzenich, 2001), we find it unlikely that such changes
will occur at the level of initial sensory processing. Much more
likely would be to see changes in representations in structures that
subserve more flexible representations, such as prefrontal cortex
and hippocampus (Cohen & Eichenbaum, 1993; Fuster, 1997;
O’Keefe & Nadel, 1978; Redish, 1999; Robbins, 2005). Lesion,
stimulation, and recording evidence suggest a direct role for the
medial prefrontal cortex in the addition of new signals to drive
extinction (Lebron, Milad, & Quirk, 2004; Milad & Quirk, 2002;
Quirk et al., 2006; Sotres-Bayon, Cain, & LeDoux, 2006). A role
for the hippocampus in reversal learning has been known since the
1970s (Hirsh, 1974; Hirsh et al., 1978; Isaacson, 1974; Nadel &
Willner, 1980; O’Keefe & Nadel, 1978). Hippocampal lesions
interfere with the contextual dependence of extinction and remove
the ability of context to renew responding (Bouton et al., 2006).
The hippocampus provides a direct projection to medial prefrontal
cortex (Ferino, Thierry, & Glowinski, 1987; Jay, Burette, & La-
Roche, 1995; Jay & Witter, 2004), which may allow it to provide
contextual signals to the prefrontal representation.

As noted above, current theories of extinction have suggested
that extinction arises from the addition of new variables, identified
as “inhibitory” (Delameter, 2004; Pavlov, 1927) or “contextual”
(Bouton, 2002, 2004). The data examining prefrontal effects on
amygdala associations suggest a role of prefrontal cortex in the

addition of new “inhibitory” signals (Milad, Vidal-Gonzalez, &
Quirk, 2004). In contrast, hippocampal activity and hippocampal
integrity have both been implicated in the representation and
processing of contextual cues (O’Keefe & Nadel, 1978; Redish,
1999). One possibility is that animals have two mechanisms
through which the state classification can be changed: a prefrontal
mechanism providing the addition of new variables to the classi-
fication problem (set shifting: Robbins, 2005; dimension augmen-
tation: Grossberg, 1976) and a hippocampal mechanism providing
a change in the systemic representation of the underlying context
(remapping: C. A. Barnes, Suster, Shen, & McNaughton, 1997;
Bostock, Muller, & Kubie, 1991; Redish, 1999; Sharp, Blair,
Etkin, & Tzanetos, 1995; Wills, Lever, Cacucci, Burgess, &
O’Keefe, 2005). In any case, we suggest that the flexibility of
representations in the prefrontal cortex and hippocampus provides
the animal with an ability to change the state classification func-
tion, which provides the animal with the ability to associate similar
situations with new states with which new values can be associ-
ated.

We did not explicitly model frontal cortex or hippocampus in
our model. Instead, the implementation of state in the model was
based on a very abstract competitive-learning model of state
spaces. However, many models of categorization learning have
been based on a similar prototype-centered process much like that
used here (Ashby & Maddox, 2005; Hertz et al., 1991; Kéri, 2003;
Lakoff, 1990). This model can be conceptually translated into
standard distributed (neural) models of cortex and hippocampus
(Arbib, 1995; Durstewitz, Kelc, & Gunturkun, 1999; Durstewitz,
Seamans, & Sejnowski, 2000; Redish, 1999; Rumelhart & Mc-
Clelland, 1986; Seamans, Gorelova, Durstewitz, & Yang, 2001;
Seamans & Yang, 2004).

We assume that the state hypothesis is represented through
distributed encoding across an autoassociative network. The spe-
cific details of the autoassociative network are irrelevant to the
general hypothesis put forward here, but we note that there is a
large family of autoassociative networks with the necessary prop-
erties (Hertz et al., 1991). The key properties are (a) that cells with
similar representations should be coupled with excitatory connec-
tions, which provides completion for an incomplete input (Hertz et
al., 1991; Hopfield, 1982; Kohonen, 1980), (b) global, or near-
global, inhibition, which provides for competition between possi-
ble representations (Grossberg, 1976; Hertz et al., 1991; Wilson &
Cowan, 1973), and (c) excitatory inputs on the main cells with
associative learning (e.g., LTP) across the inputs, which provides
for storage and recognition of input cues (Hertz et al., 1991;
Hopfield, 1982). Such networks fall into three major families: cell
assemblies, in which small, but separate groups of cells support
each other (Hebb, 1949; Marr, 1971; McNaughton & Nadel,
1990); attractor networks, in which a continuous representation is
identified along a dimension, and the recurrent excitatory coupling
follows a unimodal kernel such that cells with similar preferred
values are preferentially coupled (Kohonen, 1980; Laing & Chow,
2001; Redish, 1999; Wilson & Cowan, 1973); general auto-
associators, such as the Hopfield (1982), Willshaw (Willshaw,
Bruneman, & Longuet-Higgins, 1969), or Kohonen (1980) net-
works, in which all cells are coupled and learning occurs across the
recurrent connections. In these networks, incomplete and nearby
patterns will settle to one of a subset of final patterns (Hertz et al.,
1991). The stable, final states carry remembered information and
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can serve as representations of the world that can be used to drive
value and action processing in TDRL. The set of similar patterns
that settle to the same final state define a basin of attraction. The
resistance of this final state to noise defines the depth of the basin
and can be said to form a sort of inertia in the system.

We propose that once the agent has acquired a learned associ-
ation, the network has formed a deep basin of attraction. When the
agent repeatedly receives � � 0, some process occurs that effec-
tively moves the currently observed cues c(t) outside the basin of
attraction for the memory of the situation s. This can occur either
by shrinking the basin of attraction or by increasing the distance
between the currently observed cues and the prototype. (The model
as implemented above uses the second process.) This allows a
second, slightly changed input to retain its own representation
(e.g., s�) and not to fall into the original basin (s). As the agent
learns to correctly accommodate the new state (s), the error signal
returns to 0, and the system will now have two separable basins of
attraction, differentiating the two states s and s�. Further differen-
tiation between the states will occur via the competitive learning
that arises from the recurrent inhibitory connections.

Identifying changes between states. Changes between states
can be directly identified neurophysiologically through the mea-
surement of changes in tuning curves. A tuning curve is a catego-
rization: The set of stimuli for which the cell fires is a categori-
zation of the world. For example, a place field is a categorization
of situations: Changes in place fields without changes in explicit
stimuli encode a change in the categorization of the situation
occurring at that location (remapping; Redish, 1999; Touretzky &
Redish, 1996). This remapping can be seen after important events
in an animal’s experience (Moita, Rosis, Zhou, LeDoux, & Blair,
2004; Sharp et al., 1995). Dopamine D1/D5 (ant)agonists change
the likelihood for place cells to remap with situational changes
(Kentros, Agnihotri, Streater, Hawkins, & Kandel, 2004).

Deficits in initiation and storage of new states will also produce
observable effects in behavior. An inability to recall situations (an
overwillingness to create a new state) will appear as an inability to
learn (i.e., responses will be random). An inability to recognize a
change in situations (an underwillingness to create a new state)
will appear as an inability to change responses or to extinguish
those responses (i.e., as response perseveration). Experimentally,
D1/D5 agonists produce response perseveration (Floresco & Phil-
lips, 2001; Seamans & Yang, 2004; Zahrt, Taylor, Mathew, &
Arnsten, 1997), whereas D1/D5 antagonists lead to random re-
sponding (Seamans, Floresco, & Phillips, 1998; Seamans & Yang,
2004).

The �� signal. In our theory, �� signals disappointment—the
lack of expected reward. It is a signal that one’s expectations are
incorrect. We propose that agents handle this signal by assuming
that the situation has changed, and a new situation categorization
must be identified. This has the key benefit of keeping the previous
situation category around should it become useful again.

In our model, �� is a running estimate of � � 0. It has the effect
of changing the situation-categorization component. We can thus
predict that the �� signal will control the stability of the situation-
categorization component’s state space. As �� decreases (because
the agent is not receiving the expected reward), the agent should
become more willing to categorize the situation as new (i.e., the
agent should become more willing to split the state space). If �� is
high (because the agent is receiving the expected reward), the

agent should be less willing to change its situation categorization
(i.e., the agent should be unwilling to categorize the situation as
new). As noted above, any mechanism that increases a split in the
state space can be controlled by �� . We have explored changing the
exploration/exploitation parameter �, changing the acceptable
width of the radial-basis function �s and changing the attention to
cues wk.

Humans and animals can show different balances between ex-
ploration and exploitation (Daw, O’Doherty, et al., 2006; Doya,
2000b). Animals faced with extinction conditions often increase
their responding to the stimulus and also can show increased
exploration (Domjan, 1998; Ferster & Skinner, 1957). Although
increases in � with changes in �� did not disrupt our results, they
also were unnecessary to the results shown in this article. There-
fore, we did not include a dependence of � on �� in our simulations.
Identifying the dependence of � on �� will require more detailed
and specific neural models and analyses.

The most obvious way to force a splitting of state would be to
decrease the acceptable width of the radial-basis function �s) with
decreases in �� . Thus, as the agent found itself to be losing expected
reward, it would become less willing to categorize an observed set
of cues as part of a known memory. However, in practice, we
found this to be a highly unstable mechanism to drive state-space
splitting in our simulations. Very small changes in �s made agents
split states into hundreds of states and made it difficult to learn
multiple environments. It is possible that with more accurate
neural simulations (which are based, e.g., directly on attractor
network dynamics; Durstewitz et al., 1999, 2000; Tanaka, 2006),
these sorts of changes will be stable and could be a mechanism
driving the influence of �� on state spaces.

In practice, we found that the most stable mechanism to drive
state splitting in our model was to increase the agent’s attention to
cues by increasing the wk parameter with decreases in �� .This made
the agent more sensitive to any real changes in cues (e.g., a change
in context) but also more sensitive to nonreal changes in cues (e.g.,
changes caused by noise).

What signals ��? Dopamine neurons pause in firing with un-
expected decreases in value (Bayer & Glimcher, 2005; Ljungberg
et al., 1992; Ungless, Magill, & Bolam, 2004). Thus tonic levels of
dopamine could carry the necessary information—when dopamine
levels tend to be low, the agent is not getting the expected value
from its actions and should reconsider its expectations. However,
the model that we have implemented in this article is based on
changes in attention, which may be more similar to the effects of
changes in norepinephrine or acetylcholine levels (Aston-Jones,
Chiang, & Alexinsky, 1991; Aston-Jones & Cohen, 2005; Has-
selmo, 1993; Hasselmo & Bower, 1993; Yu & Dayan, 2005). The
simplest anatomical instantiation of �� would be to have a direct
consequence of tonic dopamine levels on state-space stability. Just
such a model has been proposed by Seamans and Yang (2004).
Both the cortex and the hippocampus have large numbers of
dopamine receptors. Dopamine (ant)agonists affect representa-
tional (in)stability in both the frontal cortex (Zahrt et al., 1997) and
the hippocampus (Kentros et al., 2004).

In the hippocampus, dopamine D1/D5 antagonists decrease the
stability of place fields in mice across days, whereas dopamine
D1/D5 agonists increase the stability of place fields (Kentros et al.,
2004). As noted above, changes in the set of cells firing at a
specific location are indicative of changes in the situation catego-
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rization within that environment. This would be evidenced as
changes in place field stability.

In the frontal cortex, both D1 agonists and D1 antagonists
impair memory function (the classic “inverted-U curve” of perfor-
mance; Zahrt et al., 1997). D1 agonists produce response perse-
veration (Floresco & Phillips, 2001; Seamans & Yang, 2004; Zahrt
et al., 1997), whereas D1 antagonists produce random responding
(Seamans et al., 1998; Seamans & Yang, 2004). As noted above,
response perseveration will occur when an animal is unwilling to
consider new hypotheses (i.e., when it is unwilling to expand the
state space). Random responses will occur when an animal was
unwilling to consider that the situation is similar to previous
situations (i.e., overwilling to expand the state space).

Dopamine works through diverse mechanisms to modulate ex-
citation and inhibition within cortical networks (Arnsten, Cai,
Murphy, & Goldman-Rakic, 1994; Durstewitz et al., 1999, 2000;
Floresco & Phillips, 2001; Murphy, Arnsten, Goldman-Rakic, &
Roth, 1996; Seamans et al., 1998, 2001; Seamans & Yang, 2004;
Zahrt et al., 1997). In a recent review, Seamans and Yang (2004)
concluded that slow dopamine signals to the cortex provide a
“tone” that controls the depth of the cortical attractor. With high
dopamine, basins of attraction become deep, and representations
have more inertia and tend to be difficult to dislodge. With low
dopamine, basins of attraction become shallow, and representa-
tions have less inertia and tend to shift to new representations more
easily. This is also analogous to the “gain” hypothesis put forward
by Servan-Schreiber, Printz, and Cohen (1990): With high dopa-
mine, active cells tend to stay active, and inactive cells tend to
remain inactive, thus making it more difficult to change the rep-
resentation. This suggestion is also akin to that of Goto and Grace
(2005), who suggested (in their supplemental material) that low
tonic dopamine arising from undelivered rewards “may underlie
the ability to switch to a new strategy for achieving a goal” (p. 2).

Goto and Grace’s (2005) data also directly support our low tonic
dopamine hypothesis in that decreases in tonic levels of dopamine
increased the effect of prefrontal cortical stimulation on nucleus
accumbens. It is interesting to note that they found no effect of
changes in tonic dopamine on the hippocampal effect on nucleus
accumbens. Instead, they found that increases in phasic dopamine
signals increased hippocampal effects on the accumbens, whereas
decreases had no significant effect. This may be because the
prefrontal cortex is only recruited into the process during extinc-
tion (Milad & Quirk, 2002; Milad et al., 2004), whereas the
hippocampus always provides input to accumbens functionality.
D1/D5 agonists stabilized hippocampal representations (Kentros et
al., 2004) and increased the effect of hippocampal stimulation on
the accumbens (Goto & Grace, 2005), whereas D1/D5 antagonists
destabilized hippocampal representations (Kentros et al., 2004). It
may be that low tonic dopamine drives the hippocampus to find a
new contextual representation that is then used to cue decision
making once rewards are found again. These questions require
more detailed experiments directly examining the effect of extinc-
tion on prefrontal and hippocampal representations and the effect
of extinction on prefrontal and hippocampal signaling into the
accumbens.

However, few studies have looked at direct measures of tonic
dopamine. These studies have found tonic dopamine signals more
related to uncertainty, with increases in tonic dopamine more

related to decreases in certainty (Fiorillo, Tobler, & Schultz, 2003,
2005), and changes in representation (Stefani & Moghaddam,
2006), than to our �� signal. Other theories have suggested a role for
tonic dopamine as a baseline signal (such that phasic increases are
measured against it; Daw, 2003; Grace, 1991, 1995; O’Reilly &
Frank, 2006), as a measure of the uncertainty in the delivery of
reward (Fiorillo et al., 2003), as a measure of response vigor and
motivation (Niv et al., 2006a, 2006b), as an enabler of learning
(such that without tonic dopamine, learning becomes fixed; Gut-
kin, Dehaene, & Changeux, 2006), and as having a role in the
general issue of attention (Young, Moran, & Joseph, 2005).

An interesting possibility is that dopamine may actually carry
three signals, a burst signal carrying � � 0, a pause signal carrying
� � 0, and a tonic signal carrying another alternative signal
(average reward, response vigor, attention, etc.). In our model, the
key parameter would likely be the pauses, signaling value worse
than expected, leading to behavioral extinction through a changing
of the situation-categorization function.

Other neuromodulators. Of course, dopamine is not the only
neuromodulator to play a role in learning. Many neuromodulators,
including (but not limited to) acetylcholine, serotonin, dopamine,
and norepinephrine, have been implicated in changes in learning
(Doya, 2000b, 2002; Hasselmo, 2005; Hasselmo & Bower, 1993;
Yu & Dayan, 2005).

Yu and Dayan (2005) examined the effects of uncertainty on
learning models. They noted differences between expected and
unexpected uncertainty. In our model, the threshold �s for cate-
gorizing a cue observation c(t) with a state s and the cue-attention
parameter wk reflect expected uncertainty. In our model, �� reflects
unexpected uncertainty in that it reflects a lack of expected reward.
It might be possible to obtain similar results with a direct measure
of uncertainty. Yu and Dayan placed the signal for expected
uncertainty in acetylcholine signaling and unexpected uncertainty
in norepinephrine signaling. Yu and Dayan argued for a cholin-
ergic role in measuring cue validity and thus attention to a cue
(analogous to the role �� plays in our wk term). In fact, Yu and
Dayan (2002) explicitly suggested a role for acetylcholine in
controlling the width of a radial-basis field in a hidden Markov
model of learning.

A likely candidate for the �� signal is also norepinephrine.
Both the frontal cortex and hippocampus receive noradrenergic
inputs (Bouret & Sara, 2005; Jones & Moore, 1977; Kalaria et
al., 1989). Noradrenergic signaling has long been associated
with novelty and stimulus significance (Aston-Jones & Cohen,
2005; Bouret & Sara, 2005). Aston-Jones and colleagues
(Aston-Jones et al., 1991; Aston-Jones & Cohen, 2005; Usher,
Cohen, Servan-Schreiber, Rajkowski, & Aston-Jones, 1999)
suggested a role for norepinephrine in attention, particularly in
the realm of incorrect trials. Bouret and Sara (2005) proposed a
role for norepinephrine in reset mechanisms, particularly in the
context of reversal tasks.

Finally, it is possible that there is no external single signal
carrying �� . Intracellular processes could integrate the dopaminer-
gic input and thus change the stability of cellular learning in
response to repeated pauses in dopamine firing. Such mechanisms
are beyond the scope of this article, but we note their possibility for
completeness.
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Reinforcement and Aversion

Stimuli that change responding can be categorized into four
separate processes: reinforcement (positive value larger than ex-
pected—leading to increased responding), disappointment (lack of
expected positive value—leading to extinction), aversion (negative
value larger than expected—leading to escape), and relief (lack of
expected negative value—leading to extinction). This article ad-
dresses the first two and suggests that they arise from different
neurobiological mechanisms and have different neurobiological
consequences. Reinforcement and aversion may arise from oppo-
nent processes. Extinction of negative associations (e.g., aversion
and relief) have also been well studied (e.g., cue3shock; Lebron
et al., 2004; Myers & Davis, 2002; Quirk, 2002; Quirk et al., 2006)
and show very similar properties to extinction of positive associ-
ations (e.g., cue3food; Bouton, 2004; Capaldi & Birmingham,
1998; Rescorla, 2004). These similarities imply that aversive ex-
tinction is likely to also occur by a changing of the agent’s
representation of the world (e.g., state splitting), consistent with
observations that the original association is not forgotten under
aversive (fear) extinction.6

If aversion/relief work in a parallel manner to reinforcement/
disappointment, one would predict the existence of a parallel
system with phasic firing increases in response to aversive stimuli
and pauses in firing in response to relief. This hypothesis implies
that the single reinforcement signal � cannot subserve both rein-
forcement and aversion learning. This suggests that another signal
(�) should exist for aversion learning, with firing patterns that
represent whether the event is worse than expected (� � 0), not as
bad as expected (�� 0), or as bad as expected (�� 0). Following
our suggested mechanisms for reinforcement/disappointment (�,
��), we hypothesized the existence of � and �� terms representing
aversion and relief.

Although no current signal has been identified with this � term,
potential candidates are likely to be monoamines like dopamine.
Obvious candidates are thus serotonin (Daw, 2003; Daw et al.,
2002, Daw, O’Doherty, et al., 2006) and norepinephrine. Although
neither current recordings of norepinephrine signals (Aston-Jones,
Rajkowski, Kubiak, & Alexinsky, 1994; Clayton, Rajkowski, Co-
hen, & Aston-Jones, 2004) nor current theories of norepinephrine
function (Aston-Jones & Cohen, 2005; Bouret & Sara, 2005) are
compatible with the � term, both recordings and theories are based
on data from the locus coeruleus. Whether norepinephrine signals
from other noradrenergic structures (e.g., A1, A2) carry aversive
signals is still unknown. However, norepinephrine is known to be
necessary for conditioned taste aversion (Miranda, LaLumiere,
Buen, Bermudez-Rattoni, & McGaugh, 2003), and norepinephrine
from the A1 and A2 noradrenergic cell groups projecting to the
bed nucleus of the stria terminalis is critically involved in opiate-
withdrawal aversion (Aston-Jones, Delfs, Druhan, & Zhu, 1999;
Delfs, Zhu, Druhan, & Aston-Jones, 2000). Norepinephrine signals
directly inhibit dopamine firing, producing distinct pauses (Pala-
dini & Williams, 2004).

Negative stimuli, such as tail-pinch and shock, produce reliable
pauses in dopamine signaling (Mirenowicz & Schultz, 1996; Ung-
less et al., 2004). An implication of the � � 0-implies-state-
splitting hypothesis is thus that aversive learning could produce
state splitting. As noted above, aversion could also be learned by
either the association of an appropriate action (such as an escape),

reducing � back to 0. Moita et al. (2004) have seen evidence of
this. Moita et al. recorded hippocampal neurons from rats exposed
to shock. In the case in which the shock was preceded by a
stimulus (thus allowing the prediction of the oncoming shock), the
place cells remained stable throughout the two conditions. But in
the case in which the shock was not preceded by a stimulus (thus
removing the possibility of prediction), the conditioning changed
the place fields of a subset of cells. In the second (context) case,
we would expect that the dopamine pauses continued to build up,
which could have produced state splitting, evidenced by the
change in representation of the environment by the place cell
population.

It is important to note that the available actions in response to
reinforcement and aversion are not necessarily parallel. With pos-
itive reinforcement, the agent has to find the action that led to
reinforcement. With aversion, the agent has to find any action
except the one that led to aversion. Escape paradigms may be more
closely related to positive reinforcement paradigms in that they
entail the finding of a single action. This may predict that uncor-
related rewards would not lead to the same sort of state splitting
that Moita et al. (2004) found to occur with uncorrelated punish-
ments. In cases of uncorrelated rewards, the agent can find any (or
all actions) to identify with it. This can lead to superstitious
behaviors (Domjan, 1998; Ferster & Skinner, 1957). However, in
the cases of uncorrelated punishments, the lack of predictable
structure leads to numerous states from which actions continue to
predict shock. This may have some relevance to the phenomenon
of learned helplessness (Domjan, 1998; Seligman, 1972).

Addiction and Relapse

Addictive drugs have been hypothesized to drive maladaptive
decision making through pharmacological interactions with neu-
rophysiological mechanisms evolved for normal learning systems
(Everitt, Dickinson, & Robbins, 2001; Hyman, 2005; Kelley,
2004; Lowinson, Ruiz, Millman, & Langrod, 1997; Redish, 2004).
This means that models of extinction should have implications for
our understanding of addiction.

Although the self-administration (acquisition), extinction, rein-
statement sequence has long been used as a model of addiction and
relapse, the use of this model is still controversial (Kalivas &
Volkow, 2005; Katz & Higgins, 2003; Shaham et al., 2003). The
potential suddenness of relapse (Gawin, 1991) does suggest that
the drug-seeking association is not forgotten. This suggests that the
cessation of drug seeking may require the same processes that
underlie extinction (a changing of the state space), even if the
behavioral sequences leading to the changes are different. We
suggest that, as with extinction, the key to recovery from addiction
is a changing of the state-space representation, which allows
different consequences (i.e., natural rewards predominating over
drug rewards) and actions (i.e., not drug seeking) to be associated

6 An intriguing possibility that follows from this parallel mechanism
hypothesis is that posttraumatic stress disorder (PTSD) may be the negative
counterpart to problem gambling. Whereas problem gambling arises from
a strong reinforcing event that cannot be forgotten, PTSD may arise from
a strong aversive event that cannot be forgotten. Studying similarities
between PTSD patients and problem gamblers may lead to a deeper
understanding of how the extinction process breaks down.
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with the new state. The mechanism by which the categorization of
situation changes might be different (i.e., it might depend on �� � 0
for animals experiencing extinction training, but might depend on
top-down executive functions in humans attempting to break an
addiction), but the consequences are the same: Similar contexts
and cues are associated with alternate representations.

Relapse, then, occurs when the neural representation falls back
into the old state, returning to the original representation, which
leads to an overvalued addictive path to drug use (Redish, 2004).
As with extinction processes, this implies that relapse will be
particularly sensitive to context and other cues that can drive the
representation back to the original representation. Consistent with
these predictions, drug craving and relapse are strongly influenced
by drug-associated cues (Childress et al., 1988, 1992, 1993) and by
context (O’Brien et al., 1992). This learning-theory explanation of
relapse is independent of whether the association produces positive
desire for drugs (Jaffe, 1992; O’Brien et al., 1992; Redish, 2004;
Wise, 2004) or negative symptoms that need to be relieved (Jaffe,
1992; Koob & Le Moal, 2001; O’Brien et al., 1992). In either case,
relapse occurs when the representation returns to the original state
s and makes the pathway to drug use available again.

Two other factors that increase the probability of relapse are
reexposure to the drug (Shaham et al., 2003) and stressors (Sinha,
Catapano, & O’Malley, 1999). Reexposure to the drug will have
detectable internal effects (Kamien, Bickel, Hughes, Higgins, &
Smith, 1993; Meyer & Mirin, 1979; Tarter, Ammerman, & Ott,
1998), the set of which provide strong cues to differentiate state.
Stress may carry cue signals that relate to drug seeking (driven by
the postdrug withdrawal, which often drives immediate drug seek-
ing; Gawin, 1991; Koob & Le Moal, 2001). It is interesting that
stress does not increase the likelihood of reinstantiation of food-
seeking behavior after extinction of lever pressing for food and
only reinstates drug seeking in the drug-taking environment (Sha-
lev, Highfield, Yap, & Shaham, 2000).

Whether or not the cessation of drug seeking is well modeled by
extinction, we suggest that non-drug-seeking addicts are not seek-
ing drugs for the same reason that animals are not behaving after
extinction training: They have represented the world by different
states that have different associated consequences and values.
Relapse, then, occurs through the same mechanism as reinstantia-
tion of extinguished behaviors—a return to the original represen-
tation s, which leads to a return to drug seeking.

Our tonic dopamine hypothesis suggests that recovered addicts
will be particularly susceptible to relapse if they have low dopa-
mine levels. In the tonic dopamine hypothesis presented above,
high dopamine makes the current state stable, whereas low dopa-
mine makes the current state unstable. In this case, the new
non-drug-seeking state is the current state, thus low dopamine
would increase instability, making the agent more likely to fall out
of the current state s� and more likely to relapse to the original
state s.

Problem Gambling

The different consequences of unexpected gains (� � 0, pro-
ducing acquisition) and unexpected losses (� � 0, leading to
decreasing �� , producing state splitting) lead to important conse-
quences of variable reward processes, such as gambling: A se-

quence of unexpected wins can produce anomalous expectations
that will not be unlearned by subsequent losses.

Many compulsive gamblers start with a very big strike or a
statistically unlikely sequence of wins and then are faced with
many small losses (Custer, 1984; Wagenaar, 1988). A big unex-
pected strike would produce a very large positive � and would
create a general association with the actions leading to the reward.
Presumably, the large strike would be a very salient event. Because
subsequent losses lead to �� � 0, which leads to state splitting,
subsequent losses will not remove the expectation of winning, but
will instead produce alternate, special-case states identified with
the losses.

We have modeled this using our basic world (Figure 2). Agents
were first provided with 250 time steps in which the costs of
playing outweighed the rewards. Then agents experienced 100
time steps in which rewards dramatically outweighed the costs.
Finally, agents experienced 250 time steps in the original condition
(costs outweighed rewards). Cues remained identical under the
three conditions. We found that the larger the payout, the more
likely the agent was to split states in response to the subsequent
losses. (See Figure 8.) In our simulations, this occurred because the
larger the payout, the more likely �� was to drive state-space
splitting before the payout could be unlearned. Once the states
split, the agent was trapped in a relapse–extinction sequence in
which they responded at high rates, quit, and then responded again.
In particular, even a single small win could produce a dramatic
relapse to responding, which was not seen before the winning
streak (Figure 8).

In order to simulate the cost of playing, a small cost was applied
to each time the agent took Action 1 in any situation. After a large
payout, agents continued to play, even at substantial cost. The most
significant predictor of the size of the postwin losses was the total
amount won during the winning streak (stepwise linear regression,
coefficient non-zero, P � 10�10, reduced root-mean-square error
[RMSE] from 13.30 to 9.90). Other factors that played a predictive
role included the variance in the number of wins (Step 2, coeffi-
cient non-zero, P � 10�8, reduced RMSE to 9.50), and the number
of wins (Step 3, coefficient non-zero, P � 10�7, reduced RMSE to
8.70). Also considered, but not significant, were constant factors
( p � .99) and the variance in the payout ( p � .39). Of course, the
key to the value-association process is not the actual dollar amount
of the payout, but the internal representation within the agent.
Thus, agents who experience rewards more strongly than do others
may be more susceptible to problem gambling. Our model sug-
gests that anyone can become a problem gambler but that the
specifics will depend on the sequence of wins and losses experi-
enced by the agent and the agent’s reactions to those wins and
losses.

The identification of losses with a new state s� that must be
differentiated from an original state s may potentially explain the
effect of “hindsight bias” (Custer, 1984; Langer & Roth, 1975;
Wagenaar, 1988), in which gamblers analyze their losses and
explain them away by noting what went wrong and why they
should have known they would lose. Similarly, this theory explains
the “illusion of control,” in which gamblers believe they can
control statistical situations (Custer, 1984; Elster, 1999; Wagenaar,
1988), as a misclassification of a single statistical situation into
multiple differentiable situations (i.e., as a problem with the
situation-categorization component).
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Unlike addicts, who know how to get back to their high-value
goals but do not wish to, gamblers do not know how to get back
to their high-value goals but are continuously trying to do so.
Gamblers believe there is a way to achieve their earlier success if
they could only find it. A stereotypical problem gambler is always
trying to recapture his original success. The gambler is stuck,
trying to differentiate s from other states, never able to achieve that
magical, original state s that once led to the large reward.

Summary and Conclusion

TDRL models require two processes: a situation-categorization
process, in which cues are categorized into situations, and an
association process, in which values are associated with those
situations. We hypothesize that the situation-categorization pro-
cess reacts to the lack of delivery of expected reward by a recat-
egorization process (i.e., a “splitting” of the state space). We show
that the inclusion of this explicit situation-categorization process
enables models of acquisition, extinction, and renewal compatible
with the experimental literature. It provides explanations for ef-
fects of protein synthesis inhibitors on reconsolidation and extinc-
tion. It also provides explanations for relapse in addiction as well
as problem gambling. This model requires a signal identifying the

lack of delivered reward. We hypothesize that that signal is most
likely to be reflected in tonic levels of dopamine.
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Quirk, G. J., Garcia, R., & González-Lima, F. (2006). Prefrontal mecha-
nisms in extinction of conditioned fear. Biological Psychiatry, 60, 337–
343.

Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A
vertebrate solution to the selection problem? Neuroscience, 89, 1009–
1023.

Redish, A. D. (1999). Beyond the cognitive map: From place cells to
episodic memory. Cambridge, MA: MIT Press.

Redish, A. D. (2004, December 10). Addiction as a computational process
gone awry. Science, 306, 1944–1947.

Rescorla, R. A. (2003). Elemental and configural encoding of the condi-
tioned stimulus. Quarterly Journal of Experimental Psychology: Com-
parative and Physiological Psychology, 56(B), 161–176.

Rescorla, R. A. (2004). Spontaneous recovery. Learning and Memory, 11,
501–509.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian condi-
tioning: Variations in the effectiveness of reinforcement and nonrein-
forcement. In A. H. Black & W. F. Prokesy (Eds.), Classical condition-
ing II: Current research and theory (pp. 64–99). New York: Appleton-
Century-Crofts.

Robbins, S. J. (1990). Mechanisms underlying spontaneous recovery in
autoshaping. Journal of Experimental Psychology: Animal Behavior
Processes, 16, 235–249.

Robbins, T. W. (2005). Chemistry of the mind: Neurochemical modulation
of prefrontal cortical function. Journal of Comparative Neurology, 493,
140–146.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed pro-
cessing: Explorations in the microstructure of cognition. Cambridge,
MA: MIT Press.

Sajikumar, S., & Frey, J. U. (2004). Late-associativity, synaptic tagging,
and the role of dopamine during LTP and LTD. Neurobiology of Learn-
ing and Memory, 82, 12–25.

Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005, November 25).
Representation of action-specific reward values in the striatum. Science,
310, 1337–1340.

Schmitzer-Torbert, N. C., & Redish, A. D. (2004). Neuronal activity in the
rodent dorsal striatum in sequential navigation: Separation of spatial and
reward responses on the multiple-T task. Journal of Neurophysiology,
91, 2259–2272.

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36,
241–263.

Seamans, J. K., Floresco, S. B., & Phillips, A. G. (1998). D1 receptor
modulation of hippocampal-prefrontal cortical circuits integrating spa-
tial memory with executive functions in the rat. Journal of Neuro-
science, 18, 1613–1621.

Seamans, J. K., Gorelova, N., Durstewitz, D., & Yang, C. R. (2001).
Bidirectional dopamine modulation of GABAergic inhibition in prefron-
tal cortical pyramidal neurons. Journal of Neuroscience, 21, 3628–3638.

Seamans, J. K., & Yang, C. R. (2004). The principal features and mech-
anisms of dopamine modulation in the prefrontal cortex. Progress in
Neurobiology, 74, 1–57.

Seligman, M. E. (1972). Learned helplessness. Annual Review of Medicine,
23, 407–412.

Servan-Schreiber, D., Printz, H., & Cohen, J. D. (1990, August 24). A
network model of catecholamine effects: Gain, signal-to-noise ratio, and
behavior. Science, 249, 892–895.

Seymour, B., O’Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K.,
Dolan, R. J., et al. (2004, June 10). Temporal difference models describe
higher-order learning in humans. Nature, 429, 664–667.

Shaham, Y., Shalev, U., Lu, L., de Wit, H., & Stewart, J. (2003). The
reinstatement model of drug relapse: History, methodology and major
findings. Psychopharmacology, 168, 3–20.

Shalev, U., Highfield, D., Yap, J., & Shaham, Y. (2000). Stress and relapse
to drug seeking in rats: Studies on the generality of the effect. Psycho-
pharmacology, 150, 337–346.

Sharp, P. E., Blair, H. T., Etkin, D., & Tzanetos, D. B. (1995). Influences
of vestibular and visual motion information on the spatial firing patterns
of hippocampal place cells. Journal of Neuroscience, 15, 173–189.

Sinha, R., Catapano, D., & O’Malley, S. (1999). Stress-induced craving
and stress response in cocaine dependent individuals. Psychopharma-
cology, 142, 343–351.

Smith, C. (1995). Sleep states and memory processes. Behavioural Brain
Research, 69, 137–145.

Sotres-Bayon, F., Cain, C. K., & LeDoux, J. E. (2006). Brain mechanisms

804 REDISH, JENSEN, JOHNSON, AND KURTH-NELSON



of fear extinction: Historical perspectives on the contribution of prefron-
tal cortex. Biological Psychiatry, 60, 329–336.

Squire, L. R. (1987). Memory and brain. New York: Oxford University
Press.

Stefani, M. R., & Moghaddam, B. (2006). Rule learning and reward
contingency are associated with dissociable patterns of dopamine acti-
vation in the rat prefrontal cortex, nucleus accumbens, and dorsal stri-
atum. Journal of Neuroscience, 26, 8810–8818.

Stuber, G. D., Wightman, R. M., & Carelli, R. M. (2005). Extinction of
cocaine self-administration reveals functionally and temporally distinct
dopaminergic signals in the nucleus accumbens. Neuron, 46, 661–669.

Suri, R. E. (2002). TD models of reward predictive responses in dopamine
neurons. Neural Networks, 15, 523–533.

Suri, R. E., & Schultz, W. (1999). A neural network model with dopamine-
like reinforcement signal that learns a spatial delayed response task.
Neuroscience, 91, 871–890.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive
networks: Expectation and prediction. Psychological Review, 88, 135–
170.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An intro-
duction. Cambridge, MA: MIT Press.

Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J.,
& Kida, S. (2004). Memory reconsolidation and extinction have distinct
temporal and biochemical signatures. Journal of Neuroscience, 24,
4787–4795.
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